

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	hospital 0.8 documentation

hospital: healthchecks for Python

hospital is a Python framework to write health checks, smoke tests or
diagnoses around applications or services.

Abstract

Health checks are kind of tests, applied to running applications and services:

	write healtchecks just as you would write tests, using assertions;

	collect and run healthchecks with test runners;

	use healthchecks to validate deployments;

	plug healthchecks in supervision and monitoring tools;

	in case of incidents, use healthchecks to diagnose problems.

Example

In your project’s root package, have a healthchecks package or module,
where you assert your (running) application or service is ok:

import unittest
import hospital

@hospital.healthcheck
class DocumentationHealthCheck(unittest.TestCase):
 def test_http_200(self):
 url = 'http://hospital.readthedocs.org/en/0.6/'
 hospital.assert_http_response(url, status_code=200)

Then you can collect and run the healthchecks with command line or web
service. Here is an example with command line:

$ hospital-cli <YOUR-PACKAGE>.healthchecks

Project status

hospital is not full-featured yet. Some important features are in the
roadmap [https://github.com/python-hospital/hospital/issues/milestones].
See also vision [http://hospital.readthedocs.org/en/latest/about/vision.html].

Of course, any ideas, feedback or help are welcome :)

Resources

	Documentation: https://hospital.readthedocs.org

	IRC: #python-hospital on freenode

	Mailing-list: pythonhospital@librelist.com,
see archives at http://librelist.com/browser/pythonhospital/

	PyPI page: https://pypi.python.org/pypi/hospital

	Code repository: https://github.com/python-hospital/hospital

	Continuous integration: https://travis-ci.org/python-hospital/hospital

	Bugs & feature requests: https://github.com/python-hospital/hospital/issues

	Changelog: https://hospital.readthedocs.org/en/latest/about/changelog.html

	Roadmap: https://github.com/python-hospital/hospital/issues/milestones

Contents

	Installation

	Write healthchecks

	Collect and run healthchecks

	API
	Core

	Assertions

	HealthChecks

	About hospital
	Vision

	Alternatives and related projects

	Lexicon

	License

	Authors & contributors

	Changelog

	Contributing to hospital

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013-2014 Benoît Bryon - BSD license.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	hospital 0.8 documentation

Installation

This project is open-source, published under BSD license.
See License for details.

If you want to install a development environment, you should go to
Contributing to hospital documentation.

Install the package with your favorite Python installer. As an example, with
pip:

pip install hospital

Notes & references

See also

Changelog

 Copyright 2013-2014 Benoît Bryon - BSD license.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	hospital 0.8 documentation

Write healthchecks

Health checks are special kind of tests. So you can write health checks just
like you would write tests, except you use healthcheck()
decorator to differenciate health checks from tests.

Of course, you will not check the same things in tests and in healthchecks.
The main difference is the scope: healthchecks validate “production” stuff
whereas tests use mocks/fakes/dummies. See also Lexicon.

Assert expectations

Just like tests, health checks can be simple functions that perform assertions:

import sys
import hospital

@hospital.healthcheck
def test_python_version():
 """Python version >= 2."""
 assert sys.version_info[0] >= 2

You can reuse test libraries, like unittest [http://docs.python.org/3/library/unittest.html#module-unittest]:

import unittest
import hospital

@hospital.healthcheck
class DocumentationHealthCheck(unittest.TestCase):
 """Check `hospital` online documentation."""
 def test_ping(self):
 """`hospital` documentation server responds to ping."""
 hostname = 'hospital.readthedocs.org'
 hospital.assert_ping(hostname)

 def test_http_200(self):
 """`hospital` online documentation returns HTTP 200."""
 url = 'http://hospital.readthedocs.org/en/0.1/'
 hospital.assert_http_response(url, status_code=200)

Hospital provides a set of useful Assertions and health
check suites.

Recommended namespace: healthchecks

As a convention, put healthchecks in “healthchecks” namespace (i.e. module or
package) inside your projects.

Just as “tests” namespace is used by convention for tests.

As an example, if your project distributes an “unbreakable” root package, then
you should put healthchecks in either unbreakable/healthchecks.py
module or unbreakable/healthchecks/ package.

What should I check?

Just like tests, one big question is: what should I check? Here are some tips:

Check external resources and services

Does your application depends on third-party services? You should check their
availability, and when possible their version.

Check configuration

Often, you can guess the things to check by looking at your configuration. As
an example, URL of external services are usually mentioned in configuration.
In configuration, you may find more items to check, including internal
resources.

Check environment

With tests (unit, functional, integration...), you make sure your application
has the desired behaviour in known situations. With healthchecks, you can
assert the runtime environment (production) matches these known situations.

As an example, you may want to assert your application uses known good versions
of Python and dependencies. Or you may want to assert the user running your
application can read (or write) some filesystem locations...

 Copyright 2013-2014 Benoît Bryon - BSD license.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	hospital 0.8 documentation

Collect and run healthchecks

Given you have healthchecks, there are two main ways to
collect and run healthchecks:

	run a shell command:
	using hospital-cli command;

	using nose;

	using py.test.

	perform GET requests to a web service: using hospital.wsgi module...
	with Chaussette, Gunicorn or Circus;

	with twod.wsgi and Django;

	as a (basic) standalone server with builtin hospital-serve command.

If you want to setup another runner, notice that you can use the
is_healthcheck() function to verify whether an object is
a healthcheck or not.

hospital-cli

You can use hospital-cli to collect and run healthchecks in a shell
session:

$ hospital-cli hospital.healthchecks.predictable
.
--
Ran 1 test in 0.001s

OK

See hospital-cli --help for detailed usage and options.

Nose

Here are guidelines to collect and run healthchecks with Nose test runner [https://nose.readthedocs.org/] [1].
In the examples below, we run health checks of hospital project.

$ nosetests --all-modules --attr='is_healthcheck' hospital.healthchecks.predictable
.
--
Ran 1 test in 0.001s

OK

Reciprocally, you may want to skip healthchecks when you run tests.
With nose, it could be:

$ nosetests --all-modules --attr='!is_healthcheck' hospital.healthchecks

--
Ran 0 tests in 0.000s

OK

Tip

–all-modules option [http://nose.readthedocs.org/en/latest/usage.html#cmdoption–all-modules] [2] makes Nose collect tests in all modules. Without the
option, it would have collected modules or packages named “tests”, and not
“healthchecks”.

py.test

hospital provides a pytest plugin to run healthchecks. It registers a pytest
marker [http://pytest.org/latest/markers.html] [3] called “healthcheck”.

$ py.test -m healthcheck foo
== test session starts ==
platform darwin -- Python 2.7.5 -- py-1.4.20 -- pytest-2.5.2
plugins: hospital
collected 3 items

foo/test_foo.py ..

============================= 1 tests deselected by "-m 'healthcheck'" ==============================
============================== 2 passed, 1 deselected in 0.01 seconds ===============================

In the example above, we see that three tests were collected, and two
of those were health checks.

Tests that use hospital’s healthcheck() decorator are
automatically marked with @pytest.mark.healthcheck.

As another example, here is how to run only non-healthchecks:

$ py.test -m "not healthcheck" foo
== test session starts ==
platform darwin -- Python 2.7.5 -- py-1.4.20 -- pytest-2.5.2
plugins: hospital
collected 3 items

foo/test_foo.py .

=========================== 2 tests deselected by "-m 'not healthcheck'" ============================
============================== 1 passed, 2 deselected in 0.01 seconds ===============================

hospital-serve

hospital.wsgi embeds a basic HTTP server:

$ hospital-serve hospital.healthchecks.predictable
Serving on 0.0.0.0 port 1515...

See hospital-serve --help for detailed usage and options.

Each time you perform a GET on the server’s root, healthchecks are
collected and run.

The status code of the response is 200 in case all healthchecks passed, else it
is 500.

$ curl -X GET -I http://localhost:1515/
HTTP/1.0 200 OK
Date: Fri, 28 Feb 2014 13:19:08 GMT
Server: WSGIServer/0.1 Python/2.7.5+
Content-Type: application/json; charset=utf-8
Content-Length: 520

The output is JSON:

{
 "status": "pass",
 "details": [
 {
 "test": "Health checks are collected.",
 "status": "pass"
 }
],
 "summary": {
 "skip": 0,
 "pass": 1,
 "expected_failure": 0,
 "error": 0,
 "fail": 0,
 "total": 1,
 "unexpected_success": 0
 }
}

Gunicorn

You can use hospital.wsgi.application WSGI endpoint with Gunicorn.
Setup the list of healthchecks to run in HEALTHCHECKS environment variable
(space separated).

export HEALTHCHECKS='hospital.healthchecks.predictable'
gunicorn -w 4 hospital.wsgi:application

Which can also be written in a single line:

HEALTHCHECKS='hospital.healthchecks.predictable' gunicorn -w 4 hospital.wsgi:application

See Gunicorn documentation [http://gunicorn.org/] [4] for details.

Chaussette

You can use hospital.wsgi.application WSGI endpoint with Chaussette.
Setup the list of healthchecks to run in HEALTHCHECKS environment variable
(space separated).

export HEALTHCHECKS='hospital.healthchecks.predictable'
chaussette hospital.wsgi.application

Which can also be written in a single line:

HEALTHCHECKS='hospital.healthchecks.predictable' chaussette hospital.wsgi.application

See Chaussette documentation [https://chaussette.readthedocs.org/] [5] for details.

Circus

Here is a sample Circus configuration serving
“hospital.healthchecks.predictable” healthchecks on port 2014, using
Chaussette and a virtual environnement.

[watcher:yourproject-healthchecks]
Service command.
cmd = bin/chaussette --fd $(circus.sockets.yourproject-healthchecks) hospital.wsgi.application
numprocesses = 1
use_sockets = True
copy_env = True
working_dir = path/to/your-virtualenv
Stdout logs.
stdout_stream.class = FileStream
stdout_stream.filename = /var/log/chaussette/wsgi_healthchecks_out.log
stdout_stream.time_format = [%Y/%m/%d | %H:%M:%S]
Stderr logs.
stderr_stream.class = FileStream
stderr_stream.filename = /var/log/chaussette/wsgi_healthchecks_err.log
stderr_stream.time_format = [%Y/%m/%d | %H:%M:%S]

[socket:yourproject-healthchecks]
host = 127.0.0.1
port = 2014

[env:yourproject-healthchecks]
HEALTHCHECKS = hospital.healthchecks.predictable

See Circus documentation [http://circus.readthedocs.org/en/latest/] [6] for details.

twod.wsgi and Django

You can use twod.wsgi and hospital.wsgi.HealthCheckApp to serve
healthchecks with Django [https://www.djangoproject.com/] [7]. In your project’s urls.py module:

from django.core.urlresolvers import patterns
from twod.wsgi import make_wsgi_view
from hospital.wsgi import HealthCheckApp

urlpatterns = patterns('',
 # ...
 (r'^healthchecks(/.*)$', make_wsgi_view(HealthCheckApp(discover=['hospital.healthchecks.predictable']))),
 # ...
)

See twod.wsgi documentation [https://pythonhosted.org/twod.wsgi/embedded-apps.html] [8] for details.

Notes & references

	[1]	https://nose.readthedocs.org/

	[2]	http://nose.readthedocs.org/en/latest/usage.html#cmdoption–all-modules

	[3]	http://pytest.org/latest/markers.html

	[4]	http://gunicorn.org/

	[5]	https://chaussette.readthedocs.org/

	[6]	http://circus.readthedocs.org/en/latest/

	[7]	https://www.djangoproject.com/

	[8]	https://pythonhosted.org/twod.wsgi/embedded-apps.html

 Copyright 2013-2014 Benoît Bryon - BSD license.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	hospital 0.8 documentation

API

This section deals with hospital‘s API:

	healthcheck() allows you to mark objects (typically
tests) as healthchecks.

	hospital provides a set of assertions that cover very common use cases:
	assert_http_response()

	assert_ping()

	assert_supported_python_version()

	hospital provides a set of health check suites you can customize:
	ForeverPassingHealthCheck

	DistributionHealthCheck

	is_healthcheck() returns True if argument is an
healthcheck.

Public API exposed in root package

Main API is fully exposed within hospital‘s root package. Most of the time,
implementation lives in a module or package deeper inside hospital package,
and there is a shortcut declared in root package.

As an example, assert_http_response() lives in
hospital.assertions.http module, but you can use the
hospital.assert_http_response shorcut.

This design has been chosen for two main reasons:

	ease of use. With a simple import hospital, you get everything you need.
No need to learn hospital‘s internals.

	deprecation policy. hospital authors take care of the API that is exposed
in root package. They care less about moving or removing internals.

 Copyright 2013-2014 Benoît Bryon - BSD license.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	hospital 0.8 documentation

 	API

Core

healthcheck

	
hospital.core.healthcheck(test)

	Make test a healthcheck and return it.

Basically sets is_healthcheck attribute to True.

Can be used as a function-decorator:

>>> from hospital import healthcheck, is_healthcheck
>>> @healthcheck
... def test_dummy():
... pass
>>> is_healthcheck(test_dummy)
True

Can be used as a class-decorator:

>>> import unittest
>>> @healthcheck
... class DummyTestCase(unittest.TestCase):
... pass
>>> is_healthcheck(DummyTestCase)
True

Can be used to modify instance:

>>> def test_noop():
... pass
>>> is_healthcheck(test_noop)
False
>>> healthcheck_noop = healthcheck(test_noop)
>>> is_healthcheck(healthcheck_noop)
True

is_healthcheck

	
hospital.core.is_healthcheck(obj)

	Return True if obj is an healthcheck.

>>> from hospital import healthcheck, is_healthcheck
>>> @healthcheck
... def test_dummy():
... pass
>>> is_healthcheck(test_dummy)
True

 Copyright 2013-2014 Benoît Bryon - BSD license.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	hospital 0.8 documentation

 	API

Assertions

hospital provides a set of assertions to write healthchecks.

HTTP

Assertions around HTTP resources.

	
hospital.assertions.http.assert_http_response(url, status_code=200, timeout=1, msg=None)

	Assert that GET url returns status_code within timeout.

>>> from hospital import assert_http_response
>>> assert_http_response('http://hospital.readthedocs.org', 200)

Raises AssertionError [http://docs.python.org/3/library/exceptions.html#AssertionError] in case of failure.

>>> assert_http_response('http://hospital.readthedocs.org', 401)
...
Traceback (most recent call last):
 ...
AssertionError: GET "..." returned 200 status code. Expected 401.

Use timeout argument as a ceil for tolerable latency (in seconds).

>>> assert_http_response('http://hospital.readthedocs.org', timeout=10)

Default value for timeout is 1 second. This value was chosen with the
idea that if you cannot get a response from external services within 1
second, then there is a performance issue.

Networking

Assertions related to networking.

	
hospital.assertions.networking.assert_ping(host, timeout=1, msg=None)

	Assert host responds to ping within timeout.

>>> from hospital import assert_ping
>>> assert_ping('hospital.readthedocs.org')

Packaging

Assertions related to Python packaging.

	
hospital.assertions.packaging.assert_supported_python_version(distribution, version=None, msg=None)

	Assert that distribution claims support for Python version.

Typically used to check theorical compatibility between runtime Python
version and installed Python software.

	distribution

	Distribution object, as returned by pkg_resources.get_distribution().

>>> from hospital import assert_supported_python_version
>>> import pkg_resources
>>> hospital_dist = pkg_resources.get_distribution('hospital')
>>> assert_supported_python_version(hospital_dist)

	version

	Python version, as a string. If omitted or None (the default), the
current Python version is retrieved from sys.version_info.

As an example, hospital claims support for Python 2.7 and 3.3, but not
for version 2.6.

>>> assert_supported_python_version(hospital_dist, version='2.7')
>>> assert_supported_python_version(hospital_dist, version='3.3')
>>> try:
... assert_supported_python_version(hospital_dist, version='2.6')
... except AssertionError:
... pass

See also DistributionHealthCheck.

 Copyright 2013-2014 Benoît Bryon - BSD license.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	hospital 0.8 documentation

 	API

HealthChecks

hospital provides a set of health check suites you can customize.

Packaging

Healthchecks related to Python packaging.

	
class hospital.healthchecks.packaging.DistributionHealthCheck(methodName='runTest')

	Bases: unittest.case.TestCase

Several checks related to project’s distribution.

The simplest way to reuse this healthcheck is to inherit from it and
customize the distribution_name attribute.

	
distribution_name = 'hospital'

	Distribution name.
This is a class attribute in order to share it between test methods.

	
distribution = None

	Distribution instance.
This is a class attribute in order to share it between test methods.
It is to be populated by get_distribution() during setup.

	
get_distribution()

	Return distribution instance from distribution_name.

	
setUp()

	Setup distribution.

	
test_python_version()

	Make sure project runs on supported Python version.

This healthcheck focuses on compatibility of project within
environments that actually use it, whereas unit tests take care of:

	supported Python versions declaration (setup.py, setup.cfg).

	project was developed within supported environment(s).

	
is_healthcheck = True

	

Predictable

Predictable health checks, i.e. they always have the expected behaviour.

	
class hospital.healthchecks.predictable.ForeverPassingHealthCheck(methodName='runTest')

	Bases: unittest.case.TestCase

Health check that forever passes.

Useful to check that health checks can be run, discovered, or to check
their output.

As an example, once you have setup your environment, you should be able to
collect this health check and run it sucessfully, or it would mean there is
something wrong with your setup... Configuration of health check discovery
could be the cause.

	
test_true()

	Health checks are collected.

	
is_healthcheck = True

	

 Copyright 2013-2014 Benoît Bryon - BSD license.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	hospital 0.8 documentation

About hospital

This section is about the hospital project itself.

	Vision

	Alternatives and related projects

	Lexicon

	License

	Authors & contributors

	Changelog

 Copyright 2013-2014 Benoît Bryon - BSD license.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	hospital 0.8 documentation

 	About hospital

Vision

hospital makes it easy to setup and use health checks in Python [http://python.org] [1].

Made for operations

Once applications or services have been installed and configured, how to
figure out if everything goes fine? Is the configuration ok? Is environment
missing some component? Operations need feedback.
Health checks are part of monitoring and supervision.

hospital provides tools to retrieve on demand feedback about application
status.

From smoke tests to scenarios, the goal is to help operations and developers
to monitor applications.

By developers

Applications and services are made of software, which is made by developers.
Developers are the very first ones who are given the opportunity to run the
software. They do need health checks just like they need unit tests or
integration tests. Moreover, developers are the ones who know what their
software need: environment, configuration... Developers are the ones who can
write useful and accurate health checks.
Health checks are part of the development process.

hospital is a library that helps developers write health checks.

Focus on what is actually going wrong

How many times have you been searching for a bug when the problem was
configuration? How many times have you been searching a problem in
configuration when the database server was down for some reason?

A good overview of what is going wrong, including environment and configuration
concerns, helps operations and developers focus on the right symptoms.

hospital provides human-readable and robot-parseable output.

Quick checks, full diagnostics

First, operations want to get feedback quickly. If everything is ok, there is
no need to trigger deeper checks.

Then, when smoke tests reveal anomalies, operations and developers need more
information in order to figure out what is going wrong.

From smoke tests to diagnostic scenarios, hospital helps users to provide
the right feedback in any situation.

A general-purpose Python library

hospital is a general-purpose Python library. It means that it does not
target specific frameworks. Other projects do, and they can use hospital.

Keep it simple

hospital provides base tools for health checks. As an example, the
intention is not to provide a full-featured GUI for users, but rather to
provide tools to easily discover health checks, run them, and return parseable
output. Other projects can be built upon hospital.

A place to share and promote best practices

python-hospital [https://github.com/python-hospital] [2] has been created as a place where developers can converge,
meet, discuss, share experience or tools.

hospital is part of python-hospital. It has been created to focus on
general-purpose Python features. One of the very first step is to collect
such features from several projects that share similar goals.
See Alternatives and related projects for details.

References

	[1]	http://python.org

	[2]	https://github.com/python-hospital

 Copyright 2013-2014 Benoît Bryon - BSD license.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	hospital 0.8 documentation

 	About hospital

Alternatives and related projects

This document presents other projects that provide similar or complementary
functionalities. It focuses on differences with hospital.

The python-hospital project

hospital is part of the python-hospital [https://github.com/python-hospital] [1] project. hospital contains the
general Python layer, and other projects focus on more specific needs.

For Django

django-health-check

django-health-check [https://pypi.python.org/pypi/django-health-check] [3] provides health checks for the Django [https://djangoproject.com] [2] framework.

Health checks instances need to be registered in order to be loaded. The
registration is performed in a similar manner than admin classes of Django’s
builtin administration application.

hospital is inspired by unittest and related tools, and so is discovery and
loading.

django-doctor

django-doctor [https://pypi.python.org/pypi/django-doctor] [4] provides health checks for the Django [https://djangoproject.com] [2] framework.

hospital‘s features, such as HealthCheck, were first
introduced in django-doctor. But some features were not specific to Django,
and hospital was created. See https://github.com/funkbit/django-doctor/pull/2
and https://github.com/funkbit/django-doctor/pull/4.

django-smoketest

django-smoketest [https://pypi.python.org/pypi/django-smoketest] [5] provides health checks for the Django [https://djangoproject.com] [2] framework.

Notes & references

	[1]	https://github.com/python-hospital

	[2]	(1, 2, 3) https://djangoproject.com

	[3]	https://pypi.python.org/pypi/django-health-check

	[4]	https://pypi.python.org/pypi/django-doctor

	[5]	https://pypi.python.org/pypi/django-smoketest

 Copyright 2013-2014 Benoît Bryon - BSD license.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	hospital 0.8 documentation

 	About hospital

Lexicon

Here are notes about vocabulary.

Note

The definitions below reflect usage in hospital project. If you think
something is wrong, let’s report it as a bug [https://github.com/python-hospital/hospital/issues] [1], because vocabulary matters
;)

Contents

	Lexicon
	Why health checks are tests?

	What is the difference between health checks and unit tests?

	What is the difference between health checks and integration tests?

	Health checks VS smoke tests?

Why health checks are tests?

Health checks and unit tests look like each other: they both perform
assertions, in order to return some “ok” or “error” binary information to the
user.

Moreover, in Python ecosystem, many tools deal with tests, and community is
used to testing.

So, in order to make health checks easy and powerful, they were created as
a special kind of tests. Moreover, this design requires small code, since most
implementations already exist.

What is the difference between health checks and unit tests?

Unit tests:

	assert implementation internals work as expected.

	use mocks, fakes, stubs...

	use test data (data can be destroyed when tests are run).

	are run on dedicated environments (development, continuous integration...),
i.e. they can consume dedicated resources (CPU, memory, bandwidth, ...).

	are about implementation, features, bugs...

	are part of development process.

	are mostly read by development team.

Whereas health checks:

	return status of a running application.

	use real life configuration (i.e. production) and environment.

	use real life data, i.e. data matters!

	are run on live environments (production), i.e. resources usage matters much
more!

	are about environment, networking, configuration...

	are part of monitoring or supervision.

	are mostly read by operations team.

As an example:

	unit test: all Python bindings for some database client work as expected:
connect, read, write...

	health check: the running application successfully connects to the database
server. If the connection can be established, then everything covered by
unit tests is implicitely supposed to work.

What is the difference between health checks and integration tests?

It is nearly the same answer than What is the difference between health checks
and unit tests? above...

Integration tests make sure some components can work together, in dedicated
environments, with dummy data and users...

Whereas health checks actually check the status of running applications.

Health checks VS smoke tests?

Smoke tests are a kind of health checks.

Smoke tests are light and quick operations that return feedback.
They are the health checks you usually run (and setup) first.

Then, other health checks can give you more details, so that you get a better
diagnosis.

When smoke tests return positive feedback (i.e. everything seems alright), it
may be useless to run deeper tests. Else, if some smoke test returns negative
feedback (there is something wrong), then additional health checks may provide
more details. This is what hospital calls a diagnosis scenario.

Notes & references

	[1]	https://github.com/python-hospital/hospital/issues

 Copyright 2013-2014 Benoît Bryon - BSD license.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	hospital 0.8 documentation

 	About hospital

License

Copyright (c) 2013-2014, Benoît Bryon.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

	Neither the name of hospital nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 Copyright 2013-2014 Benoît Bryon - BSD license.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	hospital 0.8 documentation

 	About hospital

Authors & contributors

Maintainer: Benoît Bryon <benoit@marmelune.net>

Contributors:

	Rémy Hubscher <hubscher.remy@gmail.com>

	Frank Tobia <frank.tobia@gmail.com>

Full list at https://github.com/python-hospital/hospital/graphs/contributors.

hospital was also inspired by:

	django-doctor [https://pypi.python.org/pypi/django-doctor] [2], by Jon Lønne <jon@funkbit.no>

	django-health-check [https://pypi.python.org/pypi/django-health-check] [1], by Kristian Øllegaard <kristian@kristian.io>

	django-smoketest [https://pypi.python.org/pypi/django-smoketest] [3], by Anders Pearson <anders@columbia.edu>

See also Alternatives and related projects.

References

	[1]	https://pypi.python.org/pypi/django-health-check

	[2]	https://pypi.python.org/pypi/django-doctor

	[3]	https://pypi.python.org/pypi/django-smoketest

 Copyright 2013-2014 Benoît Bryon - BSD license.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	hospital 0.8 documentation

 	About hospital

Changelog

This document describes changes between past releases. For information about
future releases, check milestones [https://github.com/python-hospital/hospital/issues/milestones] [1] and Vision.

0.8 (2014-05-05)

Integration with pytest and support for Python 3.4.

	Feature #50: pytest can collect and run healthchecks.

	Feature #65: added support for Python 3.4.

	Refactoring #62: moved tests outside distribution, i.e. hospital.tests
is no longer available. Tests now live in hospital’s repository only.

	Refactoring #59: removed nose and rednose from sphinx requirements in
tox.ini.

	Refactoring #58: removed useless all target in Makefile.

0.7 (2014-04-15)

Bugfixes.

	Bug #52: fixed test discovery in packages and modules located outside working
directory. Was raising exceptions such as AssertionError: Path must be
within the project and ValueError: Attempted relative import in
non-package.

	Feature #54: README (and documentation index) shows a simple example.

	Bug #51: documentation footer now mentions “BSD license” next to the
copyright. Was missing, readers could believe the project is not open source.

0.6 (2014-03-07)

Improvements around CLI and WSGI features.

	Feature #44: hospital.wsgi.application is a WSGI endpoint. Added
documentation about running healthcheck service with Gunicorn, Chaussette,
Circus, and Django via twod.wsgi.

	Feature #47: hospital-cli and hospital-serve commands are a
convenient way to use hospital.cli and hospital.wsgi.

0.5 (2014-02-28)

Introduced CLI and WSGI. They offer basic features (with experimental
implementation), but they should be enough as proof of concepts.

	Feature #39: python -m hospital.cli collects and runs healthchecks.

	Feature #20: python -m hospital.wsgi runs a web server that collects
and runs healthchecks on HTTP GET.

0.4 (2014-02-25)

Improvements around output of builtin assertions.

	Feature #33: builtin assertions functions accept optional msg argument.

	Bugfix #31: when assert_http_response() fails, it provides comprehensive
message (was “AssertionError” without details about URL and reason).

0.3 (2014-02-09)

Documentation review and development environment refactoring: let’s try to
simplify usage and development of hospital.

	Feature #25: the Makefile in project’s repository no longer creates a
virtualenv. Developers setup the environment as they like, i.e. using
virtualenv, virtualenvwrapper or whatever. Added documentation about the
Makefile scope and usage.

	Feature #19: reviewed contributor guide, added branching policy.

	Feature #24: added note about project’s status in documentation.

	Feature #21: reviewed API documentation.

	Bugfix #18: README can be rendered as HTML with docutils‘ rst2html.py.
Fixes PyPI information page.

0.2 (2013-12-27)

Documentation review, API refactoring, addition of some assertions.

	Feature #17: introduced assert_http_response assertion.

	Feature #16: introduced assert_supported_python_version assertion.

	Feature #15: exposed API at root of hospital package. Items not exposed
in this root API may be moved without notice, whereas root API is tested and
refactoring will be documented.

	Feature #14: introduced healthcheck decorator. Deprecates former
HealtCheck base class (not removed in this version).

	Feature #13: dropped support of Python 2.6

	Feature #12: introduced support of Python 3.3

	Feature #11: project has mailing-list pythonhospital@librelist.com

	Feature #10: project has IRC channel #python-hospital on freenode.

	Bugfix #9: Fixed examples in README.

	Feature #8: introduced assert_ping assertion.

	Feature #7: added tests around hospital’s Python API.

0.1 (2013-05-11)

	Feature #6: added support for TravisCI continuous integration

	Feature #5: introduced documentation

	Feature #4: imported HealthCheckLoader from django-doctor.

	Feature #3: introduced DistributionHealthCheck.

	Feature #2: introduced PredictableHealthCheck.

	Feature #1: imported HealthCheck from django-doctor.

	Initialized project

Notes & references

	[1]	https://github.com/python-hospital/hospital/issues/milestones

 Copyright 2013-2014 Benoît Bryon - BSD license.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	hospital 0.8 documentation

Contributing to hospital

This document provides guidelines for people who want to contribute to the
project.

Create tickets

Please use hospital bugtracker [https://github.com/python-hospital/hospital/issues] [1] before starting some work:

	check if the bug or feature request has already been filed. It may have been
answered too!

	else create a new ticket.

	if you plan to contribute, tell us, so that we are given an opportunity to
give feedback as soon as possible.

	Then, in your commit messages, reference the ticket with some
refs #TICKET-ID syntax.

Use topic branches

	Work in branches.

	Prefix your branch with the ticket ID corresponding to the issue. As an
example, if you are working on ticket #23 which is about contribute
documentation, name your branch like 23-contribute-doc.

	If you work in a development branch and want to refresh it with changes from
master, please rebase [http://git-scm.com/book/en/Git-Branching-Rebasing] [2] or merge-based rebase [http://tech.novapost.fr/psycho-rebasing-en.html] [3], i.e. do not merge master.

Fork, clone

Clone hospital repository (adapt to use your own fork):

git clone git@github.com:python-hospital/hospital.git
cd hospital/

Usual actions

The Makefile is the reference card for usual actions in development
environment:

	Install development toolkit with pip [https://pypi.python.org/pypi/pip/] [4]: make develop.

	Run tests with tox [https://pypi.python.org/pypi/tox/] [5]: make test.

	Build documentation: make documentation. It builds Sphinx [https://pypi.python.org/pypi/Sphinx/] [6]
documentation in var/docs/html/index.html.

	Run hospital‘s own healthchecks: make healthcheck.

	Release hospital project with zest.releaser [https://pypi.python.org/pypi/zest.releaser/] [7]: make release.

	Cleanup local repository: make clean, make distclean and
make maintainer-clean.

See also make help.

Notes & references

	[1]	https://github.com/python-hospital/hospital/issues

	[2]	http://git-scm.com/book/en/Git-Branching-Rebasing

	[3]	http://tech.novapost.fr/psycho-rebasing-en.html

	[4]	https://pypi.python.org/pypi/pip/

	[5]	https://pypi.python.org/pypi/tox/

	[6]	https://pypi.python.org/pypi/Sphinx/

	[7]	https://pypi.python.org/pypi/zest.releaser/

 Copyright 2013-2014 Benoît Bryon - BSD license.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	hospital 0.8 documentation

 Python Module Index

 h

 			

 		
 h	

 	[image: -]
 	
 hospital	

 	
 	
 hospital.assertions.http	

 	
 	
 hospital.assertions.networking	

 	
 	
 hospital.assertions.packaging	

 	
 	
 hospital.core	

 	
 	
 hospital.healthchecks.packaging	

 	
 	
 hospital.healthchecks.predictable	

 Copyright 2013-2014 Benoît Bryon - BSD license.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	hospital 0.8 documentation

Index

 A
 | D
 | F
 | G
 | H
 | I
 | S
 | T

A

 	

 	assert_http_response() (in module hospital.assertions.http)

 	assert_ping() (in module hospital.assertions.networking)

 	

 	assert_supported_python_version() (in module hospital.assertions.packaging)

D

 	

 	distribution (hospital.healthchecks.packaging.DistributionHealthCheck attribute)

 	distribution_name (hospital.healthchecks.packaging.DistributionHealthCheck attribute)

 	

 	DistributionHealthCheck (class in hospital.healthchecks.packaging)

F

 	

 	ForeverPassingHealthCheck (class in hospital.healthchecks.predictable)

G

 	

 	get_distribution() (hospital.healthchecks.packaging.DistributionHealthCheck method)

H

 	

 	healthcheck() (in module hospital.core)

 	hospital.assertions.http (module)

 	hospital.assertions.networking (module)

 	hospital.assertions.packaging (module)

 	

 	hospital.core (module)

 	hospital.healthchecks.packaging (module)

 	hospital.healthchecks.predictable (module)

I

 	

 	is_healthcheck (hospital.healthchecks.packaging.DistributionHealthCheck attribute)

 	

 	(hospital.healthchecks.predictable.ForeverPassingHealthCheck attribute)

 	

 	is_healthcheck() (in module hospital.core)

S

 	

 	setUp() (hospital.healthchecks.packaging.DistributionHealthCheck method)

T

 	

 	test_python_version() (hospital.healthchecks.packaging.DistributionHealthCheck method)

 	

 	test_true() (hospital.healthchecks.predictable.ForeverPassingHealthCheck method)

 Copyright 2013-2014 Benoît Bryon - BSD license.
 Created using Sphinx 1.2.2.

 _static/plus.png

_static/ajax-loader.gif

_static/comment.png

_static/up.png

_static/down.png

_static/file.png

_static/up-pressed.png

_static/down-pressed.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		
 modules |

 		hospital 0.8 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013-2014 Benoît Bryon - BSD license.
 Created using Sphinx 1.2.2.

_static/comment-close.png

_static/minus.png

